

7 - Sample space, events, counting

Statistics (experiments, surveys) is **empirical**.

Probability theory models the hidden process that generates this observed outcome.

Outcomes: All possible results of an experiment. Here are some observed outcomes:	Sample space: Set of all outcomes.	Event: A subset of the sample space that interests us.
Experiment 1: Flip a coin H, T, H, H, ...	{H, T}	All events: {}, {H}, {T}, {H, T}
Experiment 2: Flip 2 coins HT, TH, HH, HT, ...	{H, T} \times {H, T}	{Two heads} = {(H, H)} {One head} = {(H, T), (T, H)} { ≥ 1 tail} = {(T, H), (H, T), (T, T)}
Experiment 3: Draw a card Face, No face, No face, No face, No face, No face, Face, No face, No face, Faces come up about 23% of the time	To get face vs no-face cards, you'd think I was drawing from a deck of 52 playing cards: $\{A, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K\} \times \{\spadesuit, \heartsuit, \clubsuit, \diamondsuit\}$	{Face cards} = {J, Q, K} \times {♠, ♥, ♦, ♣} {Heart cards} = {A, 2, ..., J, Q, K} \times {♥}

Experiment 3 was actually generated by **sampling only 13 cards of the same suit (not the whole deck of 52 cards)**.

Moral: different probability models (with different sample spaces) can produce the same observed outcomes.

How to count occurrences of observed outcomes?

Step Rule of Counting. (aka Multiplication Rule)

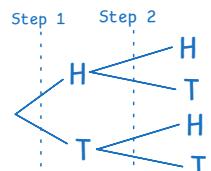
If an experiment has two steps (step 1: m outcomes; step 2: n outcomes). Then the experiment has $m \cdot n$ outcomes.

Example 1. How many outcomes are possible by flipping two coins?
(Aka: What is the size of this sample space?)

Answer: Step 1: **Flip 1st coin (2 outcomes)**.

Step 2: **Flip 2nd coin (2 outcomes)**.

Overall: $2 \times 2 = 4$ outcomes.



Step Rule works the same way for more than 2 steps:

Example 2. A box has balls labelled A, B, C. How many outcomes are possible by sample three balls "with replacement"? (i.e. put the ball back after sampling)

Answer: Step 1: Choose one of A, B, C. (3 options)

Step 2: Same. (3 options)

Step 3: Same. (3 options)

... overall $3 \times 3 \times 3 = 27$ options.

Example 3. What if now we sample three balls "without replacement"?

Answer: Step 1: Choose one of the balls A, B, C. (3 options)

Step 2: Choose one of remaining 2 balls (2 options)

Step 3: (1 options)

... overall $3 \times 2 \times 1 = 6$ options.

Definition. The **factorial** of n is $n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$

So: $2! = 2 \times 1 = 2$ and $3! = 3 \times 2 \times 1 = 6$

We can reinterpret Example 3 as counting rearrangements or permutations of distinct letters:

Example 4. How many rearrangements of the word "RANDOM" are there? Answer: 6!

To count permutations of indistinct letters, divide by the ways identical letters could be permuted:

Example 5. How many rearrangements of the word "MOMMA" are there?

$M_1OM_2M_3A$	$M_1OM_3M_2A$	$M_2OM_1M_3A$	$M_2OM_3M_1A$	$M_3OM_1M_2A$	$M_3OM_2M_1A$	→ $MOMMA$
$M_1M_2M_3AO$	$M_1M_3M_2AO$	$M_2M_1M_3AO$	$M_2M_3M_1AO$	$M_3M_1M_2AO$	$M_3M_2M_1AO$	→ $MMMAO$
$M_1M_2M_3OA$	$M_1M_3M_2OA$	$M_2M_1M_3OA$	$M_2M_3M_1OA$	$M_3M_1M_2OA$	$M_3M_2M_1OA$	→ $MMMOA$
⋮	⋮	⋮	⋮	⋮	⋮	⋮

Answer: If M's are distinct, there are $5!$ such words. But the 3 M's are considered identical, so we group their $3!$ rearrangements together.

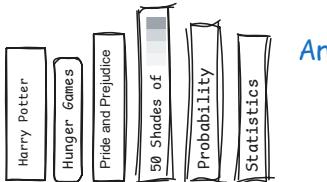
Answer: $5!/3!$

Example 6. How many rearrangements of the word "STATISTICS" are there?

Answer: Of the 10 letter, there are 3 S's, 3 T's, 2 I's, so $\frac{10!}{3!3!2!}$

Count the unordered selection of k things from n things via "Yes"/"No" assignment:

Example 7. How many ways can you select 3 books from 6 books to bring with you?



Answer: Selecting 3 books from 6 is encoded as 3 Y's and 3 N's
e.g. selecting first 3 books is encoded as YYYNNN.
Number of such selections = permutations of YYYNNN
= $6!/(3!3!)$

Definition. k -combination counts the unordered selection of k things from n distinct things, sampled without replacement: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ ← "binomial coefficient" or " n choose k "

Example 8. How many ways can you select 2 villagers from a district of 8,000 in the Hunger Games?

Answer: This is 8000 choose 2.

Example 9. Flip 7 coins. How many outcomes have exactly 3 heads?

Answer: This is 7 choose 3, or # of permutations of HHHTTTT.